

Motivation

- The different size of voids can be generated in high power LEDs due to outgassing during solder reflow process, which results in different heat dissipation and thus different junction temperature.
- Characterization of the die-attach thermal interface (DTI) in high power LEDs is one of the most important tasks for assessing performance range (center wavelength and power efficiency) and reliability.

Objective

 An advanced inverse approach is proposed and implemented to more accurately determine the effective DTI resistance by understanding unique electrical/optical/ thermal characteristic of high power LEDs.

Approach

- A hybrid analytical/numerical model is first used to determine the approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI.
- The DTI resistance is determined inversely from the experimental data using numerical modeling.

Characterization of Die-Attach Thermal Interface of High-Power Light-Emitting Diodes: An Inverse Approach

D.-S. Kim, Prof. Han, and Prof. Bar-Cohen

Figure 1. Crosssectional image of the highpower blue LED and the zoomed-in view of the die attach

Transient junction temperature characterization

Hybrid Experimental/Analytical/Numerical Model

• Test setup

• A sourcemeter, a DAQ, and a thermoelectric cooler (TEC), an integrating sphere are integrated into a LabVIEW program.

Figure 2. Schematic of the measurement setup

• Experimental results

- The transient junction temperature behavior of an LED is first measured by the forward voltage method.
- The radiant flux was measured by the integrating sphere to calculate the heat dissipation.

- Figure 3. Transient
- voltage behaviors under four different operating
- currents

Figure 4. Spectral power Distributions (SPDs) under the different operating currents

Hybrid Analytical/Numerical Model

analytical/numerical solution.

Figure 5. Schematic of the hybrid analytical/numerical model

DTI measurements and Verification

domain using numerical modeling.

Impact

- measurement accuracy of 0.01 K/W.
- nondestructively.

Related publication

vol. 5, pp. 1635-1643, 2015.

aboratory for Optomechanics and Micro/Nano Semiconductor/Photonics Systems

Sponsor: UNIVERSITY OF MARY AND

• The transient time domain governed predominantly by the resistance of the DTI is selected using a hybrid

 $\Delta T_2 \prec$

Figure 6. Transient behavior of the temperature difference of each layer

 The resistance of the DTI was determined inversely from the experimental data over the predetermined transient time

> Figure 7. Predicted transient behavior of AuSn die attach at different forward currents is compared with experimental data

• The results confirmed that the proposed approach offered a

• With the high accuracy offered by the proposed approach, the die bonding manufacturing process can be evaluated

• D.-S. Kim, B. Han, and A. Bar-Cohen, "Characterization of Die-Attach Thermal Interface of High-Power Light-Emitting Diodes: An Inverse Approach," IEEE Transactions on Components, Packaging and Manufacturing Technology,

