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Investigations on Moisture Induced 

R li bilit IReliability Issues
Moisture absorbed into electronic packaging polymer materials causes:Moisture absorbed into electronic packaging polymer materials causes:
• Hygroscopic stresses
• Degradation of adhesion strength of resins used in electronic packaging
• High vapor pressure generation inside defective delaminated cavities              g p p g
 Detrimental effect on the reliability of microelectronics packages

Delaminations

Popcorn cracking in PBGA package Delamination of underfill by hygroscopic
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Popcorn cracking in PBGA package 
(Galloway et al, IEEE CPMT-A, 1997)

Delamination of underfill by hygroscopic 
swelling and adhesion degradation

Characterization of fundamental 
hygroscopic properties: Modeling schemes: diffusion analysis 

(th l/ i t l ) bi d
yg p p p

diffusion coefficient and
maximum moisture weight gain (solubility)

(thermal/moisture analogy), combined 
hygroscopic/thermal stress analysis

New measurement techniques for 
hygroscopic swelling coefficient
(moire interferometry and DIC)

Verification of modeling 
schemes: Predictive Mode(moire interferometry and DIC) 

Characterization of strength and Development of vapor 
pressure modeling

Characterization of strength and 
moisture induced degradation of 
polymer and polymer interface 

• Combined fracture model
Lif l l d

Reliability assessment and prediction (VQ)

• Life cycle load
• Accelerated testing environments

(85°/85%RH, Pressure Cooker, etc.)
• Virtual testing & acceleration factors
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Hygroscopic Material Properties

Moisture diffusion (Fick’s law)
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Saturated concentration

(C: concentration, D: diffusivity, T: temperature )
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(Csat : saturated weight gain, S: solubility, Pv: vapor pressure of ambient)
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Required Properties : D and CsatMeasurement through moisture weight gain 
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Mass gained by fick’s diffusion
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Calculation of D through non-linear regression
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Characterization of Hygroscopic Swelling

Ch  Hygroscopic swelling strain: where : coefficient of hygroscopic swelling (CHS)
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Measurement techniques for the swelling coefficient have been 
developed utilizing optometric tools (moiré interferometry and DIC)
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developed utilizing optometric tools (moiré interferometry and DIC)

U field

Thermal Deformation by T = -60°C Hygroscopic Deformation (85°C/85%RH)

V field

Comparable deformation by hygroscopic swelling to thermal deformation

Mechanical Engineering Department, UMCP
Copyright © 2011 LOMSS

Laboratory for Optomechanics and Micro/nano Semiconductor/Photonics Systems4

Comparable deformation by hygroscopic swelling to thermal deformation



Adhesion Strength Measurement
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Improved pressure-controlled adhesion strength measurement system
0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

SpecimenGlass substrate

Mask
Release Agent

1.2

1.4

ve
 

Normalized Adhesion Strength Data for 
Crack Method

1.2

1.4

ve
 

Normalized Adhesion Strength Data for 
Crack Method

Glass 
Substrate

11 22

0 2

0.4

0.6

0.8

1

m
al

iz
ed

 A
dh

es
iv

S
tre

ng
th

0 2

0.4

0.6

0.8

1

m
al

iz
ed

 A
dh

es
iv

S
tre

ng
th

Novel method to prepare crack-controlled specimen
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Substantial reduction in deviation (>100% <25%)
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Novel method to prepare crack controlled specimen Substantial reduction in deviation ( 100%  25%)

Combined Hygro-thermo-mechanical 
Model

Combined Analysis

Heat Transfer Thermal Strain
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Moisture Diffusion Hygroscopic Swelling
Strain Predictive Modeling
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Root Cause Analysis
Design Assessment

Design Optimization
Elasticity, viscoelasticity, etc.
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Verification of Combined Numerical 
Model

Bi-material specimen

Moisture 
absorption 
(“wet”)

Baking 
(“dry”)

1) T = 60C & Dry  Good agreement 2) T = 60C & Wet  Disagreement

Deformation measurement

3) T = 60C & Wet  Incomplete agreement 4) T = 60C & Wet  Good agreement

Deformation measurement

Finite element model
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3) T  60 C & Wet  Incomplete agreement 4) T  60 C & Wet  Good agreementFinite element model

Vapor Pressure Model

Vapor pressure-induced p p
deformation (Kitano, 1988)

Advanced FEA Implementation of 
Kitano’s Scheme without Iteration

Application to a multi-material 
package subjected to reflow process
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Kitano s Scheme without Iteration package subjected to reflow process



On-Going TasksOn Going Tasks

• Characterization of hygroscopic properties beyondCharacterization of hygroscopic properties beyond 
glass transition temperature

• Investigation on degradation of adhesion strength g g g
caused by moisture absorption

• Development of an advanced damage model p g
including bulk and interface fracture

• Development of more rigorous vapor pressure model 
that includes the physical behavior of water molecule-
polymer chain interactions
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